Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 14: 1145652, 2023.
Article in English | MEDLINE | ID: covidwho-2292746

ABSTRACT

Introduction: COVID-19 vaccines are expected to provide effective protection. However, emerging strains can cause breakthrough infection in vaccinated individuals. The immune response of vaccinated individuals who have experienced breakthrough infection is still poorly understood. Methods: Here, we studied the humoral and cellular immune responses of fully vaccinated individuals who subsequently experienced breakthrough infection due to the Delta variant of SARS-CoV-2 and correlated them with the severity of the disease. Results: In this study, an effective humoral response alone was not sufficient to induce effective immune protection against severe breakthrough infection, which also required effective cell-mediated immunity to SARS-CoV-2. Patients who did not require oxygen had significantly higher specific (p=0.021) and nonspecific (p=0.004) cellular responses to SARS-CoV-2 at the onset of infection than those who progressed to a severe form. Discussion: Knowing both humoral and cellular immune response could allow to adapt preventive strategy, by better selecting patients who would benefit from additional vaccine boosters. Trial registration numbers: https://clinicaltrials.gov, identifier NCT04355351; https://clinicaltrials.gov, identifier NCT04429594.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , Breakthrough Infections , COVID-19/prevention & control
2.
Nat Commun ; 13(1): 864, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684028

ABSTRACT

Patients with hematological malignancies have impaired immune response after two doses of BNT162b2 (Pfizer/BioNTech) vaccine against SARS-CoV-2. Here, in this observational study (registration number HDH F20210324145532), we measure SARS-CoV-2 anti-Spike antibodies, neutralizing antibodies and T-cell responses after immune stimulation with a third dose (D3) of the same vaccine in patients with chronic lymphocytic leukemia (n = 13), B cell non-Hodgkin lymphoma (n = 14), and multiple myeloma (n = 16)). No unexpected novel side effects are reported. Among 25 patients with positive anti-S titers before D3, 23 (92%) patients increase their anti-S and neutralizing antibody titer after D3. All 18 (42%) initially seronegative patients remain negative. D3 increases the median IFN-γ secretion in the whole cohort and induces IFN-γ secretion in a fraction of seronegative patients. Our data thus support the use of a third vaccine dose amongst patients with lymphoid malignancies, even though some of them will still have vaccine failure.


Subject(s)
BNT162 Vaccine/immunology , Hematologic Neoplasms , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization, Secondary/methods , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Male , Middle Aged , Multiple Myeloma , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
3.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1651966

ABSTRACT

Introduction: Aside from the reverse transcription-PCR tests for the diagnosis of the COVID-19 in routine clinical care and population-scale screening, there is an urgent need to increase the number and the efficiency for full viral genome sequencing to detect the variants of SARS-CoV-2. SARS-CoV-2 variants assessment should be easily, rapidly, and routinely available in any academic hospital. Materials and Methods: SARS-CoV-2 full genome sequencing was performed retrospectively in a single laboratory (LPCE, Louis Pasteur Hospital, Nice, France) in 103 SARS-CoV-2 positive individuals. An automated workflow used the Ion Ampliseq SARS-CoV-2 panel on the Genexus Sequencer. The analyses were made from nasopharyngeal swab (NSP) (n = 64) and/or saliva (n = 39) samples. All samples were collected in the metropolitan area of the Nice city (France) from September 2020 to March 2021. Results: The mean turnaround time between RNA extraction and result reports was 30 h for each run of 15 samples. A strong correlation was noted for the results obtained between NSP and saliva paired samples, regardless of low viral load and high (>28) Ct values. After repeated sequencing runs, complete failure of obtaining a valid sequencing result was observed in 4% of samples. Besides the European strain (B.1.160), various variants were identified, including one variant of concern (B.1.1.7), and different variants under monitoring. Discussion: Our data highlight the current feasibility of developing the SARS-CoV-2 next-generation sequencing approach in a single hospital center. Moreover, these data showed that using the Ion Ampliseq SARS-CoV-2 Assay, the SARS-CoV-2 genome sequencing is rapid and efficient not only in NSP but also in saliva samples with a low viral load. The advantages and limitations of this setup are discussed.

4.
Future Virol ; 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1560505

ABSTRACT

While tolerance to COVID-19 vaccination is considered satisfactory, a phenomenon of myocarditis, although rare, is becoming a safety concern in mRNA COVID-19 vaccination. The presence of low residual levels of double-strand RNA (dsRNA) has been reported in mRNA COVID-19 vaccine preparations. dsRNA is a known inducer of immune-inflammatory reactions. dsRNA present in vaccine nanoparticles may be suspected to be at the origin of the still unexplained cases of myocarditis.

SELECTION OF CITATIONS
SEARCH DETAIL